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It is shown by numerical simulations for a random, one-dimensional surface 
defined by the equation x3 = {(xl), where the surface profile function ~(xt) is a 
stationary, stochastic, Gaussian process, that the transverse correlation length a 
of the surface roughness is a good measure of the mean distance ~d)  between 
consecutive peaks and valleys on the surface. In the case that the surface height 
correlation function ( (~(xl )~(x ' l ) ) / (~2(xl ) )=  W(Ixl -x ' t t )  has the Lorentzian 
form W(]xll)=a2/(x~+a2), we find that (d)=O.9080a; when it has the 
Gaussian form W(Ixt l )= exp(-x~/a2) ,  we find that ( d )  = 1.2837a; and when it 
has the nonmonotonic form W(Ixll)=sin(rcxl/a)/(rcxl/a), we find that 
( d )  = 1.2883a. These results suggest that ( d )  is larger, the faster the surface 
structure factor g(lQ]) [the Fourier transform of W(]xll)] decays to zero with 
increasing [QI. We also obtain the function P(x~), which is defined in such a 
way that, if Xx=0 is a zero of ~'(xi), P(xt)dxi  is the probability that the 
nearest zero of ~'(Xx) for positive xl lies between xl and xl + dxl. 

KEY WORDS: Transverse correlation length; rough surfaces. 

1. I N T R O D U C T I O N  

A central role in any theory of randomly rough planar surfaces is played 
by the surface profile function ~(x/I ), which defines the position of the sur- 
face through the equation x3 = ~(xll). Here x H = 2C~Xl + 22x2, where 2~ and 
22 are unit vectors along the xl and x2 axes, is a position vector in the 
plane x3 = 0. It is usually assumed that ~(xll ) is a single-valued function of 
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xlt, and a stationary, stochastic, Gaussian process, characterized by the 
properties 

( f f (x l l ) )  = 0  (1.1a) 

(~ (x l l )  ~(xil)  > = 62 W(lxll - xil] ) (1.1b) 

In these equations the angular brackets denote an average over the ensem- 
ble of realizations of ((x t i), and 62 = ((2(xtl) ) is the mean-square departure 
of the surface from flatness. On the basis of the physical assumption that 
on a randomly rough surface the heights of the surface at two widely 
seprated points xtl and xlt are uncorrelated, the correlation function 
W(Ixlll ) is required to vanish as Ixrll--, oc. By definition, it has the value 
unity at I xlll =0.  Several analytic forms have been used to represent 
W(Ixlrl ) in various rough surface studies to date, e.g., 2 

W(lxlll)=exp(-x~Ja 2) (ref. 1) (1.2a) 

= exp(-[xl l l /a  ) (ref. 2) (1.2b) 

a 2 

- x~ t + a2 (ref. 2) (1.2c) 

= Jo(27r [Xll[/a) (ref. 3) (1.2d) 

The characteristic distance over which W(Ixlll) decreases significantly from 
unity is called the transverse correlation length. A precise definition of this 
quantity does not appear to have been given in the literature. An intuitively 
appealing definition is that the transverse correlation length b is obtained 
from 

= f  d2Xll W(]Xll]) 7zb 2 (1.3) 

This, however, is not a completely satisfactory definition, for when it is 
applied to the four correlation functions given by Eqs. (1.1a)-(1.1d) it 
yields 

b=a (1.4a) 

b = x/2 a (1.4b) 

b = oo (1.4c) 

b = 0  (1.4d) 

respectively. It is the fact that b equals the distance a at which the Gaussian 
correlation function W([xil[)=exp(-x~l/a 2) has decreased to 1/e of its 

2 The authors of ref. 3 denote by k R the quantity we call 2~/a. 
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initial value, which prompts the definition (1.3). However, its failure to 
yield meaningful values for the transverse correlation length for the forms 
of W(]xlt] ) given by Eqs. (1.2c) and (1.2d), both of which contain an 
explicit characteristic length a beyond which the correlation function 
decreases more or less rapidly to zero, makes it a less than satisfactory 
definition of the transverse correlation length. Thus, in common with most 
workers in the field of surface roughness, we will call the characteristic 
length a that appears in Eqs. (1.1a) (1.1d) the transverse correlation length. 

Although the transverse correlation lenght is defined as the distance 
over which the correlation function W(Ixtt]) decreases significantly from its 
value of unity at ]xrr I =0, one of our aims in this paper is to show that it 
also has what may be a more readily visualized interpretation, viz. it is a 
measure of the average distance between consecutive peaks and valleys on 
the randomly rough surface. Such a correspondence is of interest because, 
for example, estimates of the angular width of the peak in the retroreflec- 
tion direction in the angular distribution of the intensity of light scattered 
from a randomly rough reflecting surface depend on estimates of this 
distance. (4) 

In this paper we present a demonstration of this correspondence for 
the simpler case of a random surface whose surface profile function ~(x~) 
is a function of only one coordinate in the plane of the mean surface x3 = 0, 
i.e., for a random grating. Such surfaces are of interest because they have 
been used in experimental studies of the attenuation of Rayleigh surface 
acoustic waves by surface roughness (5) and of the enhanced backscattering 
of light from rough metal surfaces. (6] The corresponding demonstration for 
a two-dimensional, randomly rough surface will be presented elsewhere. 

For a one-dimensional randomly rough surface the analogues of 
Eqs. (1.1) are 

(r  = 0 (1.5a) 

( ~ (x , )  r ) = 6 2 W ( [ x ,  - x'll) (1.5b) 

where 6z= <r For what follows it is convenient to introduce the 
Fourier integral representation of r 

~(x~) = (Q)  e iex~ (1.6) 
o 0  

The Fourier coefficient ((Q) is also a Gaussianly distributed random 
variable, characterized by the properties 

( ( (Q))  --0 (1.7a) 

(((Q) ((Q')~ = 27c6(Q + Q')(52g(IQI)  (1.7b) 
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where the surface structure.factor g(tQ[) is defined by 

g( IQI )  = dXlW(jxl l )e  iox, (1.8) 
- c o  

The analogue of Eq. (1.3) for a one-dimensional, randomly rough 
surface is 

2b = dx, W(Xl)= g(0) (1.9) 
- - o ( 3  

but we will not make essential use of this relation here. 
If we denote by NL the number of zeros of [ ' (xl)  in a segment of the 

xl axis of length L, the average distance between peaks and valleys on the 
surface for a given realization of the surface is d =  L/NL. We will be 
interested in the value of d averaged over the ensemble of realizations of 
the surface. Thus, the quantity we wish to calculate is 

(d}  = (L/NL} (1.10) 
in the limit as L ~ oo. 

2. T H E  D E T E R M I N A T I O N  OF ( d )  

We calculated (NL 1) in two different ways. The first is based on the 
integral representation 

1 dte tNL (2.1) 
Nc 

SO that 

= at  < e -  

;o = dt e x p ( ( e -  'NL - -  1 )c) (2.2/ 

where ( . . . )  denotes the cumulant averageff ) We rewrite Eq. (2.2) as 

<) ;o } 1 = dt exp ( - 1 )~ , ,, 
n 1 HI  t ( N L )  c 

I ;  { l t  (NLFC = dt[exp( - t (NL} , . ) ]  1+~ 2 2 

l_t3(N3>c+~___~t4[<N4>c + 2 2 } 3(NL) , . ]+ ... 6 
2 3 4 2 (NL},.+3<N~},,  _ ( N ~ } , . +  + (NL},. 1 1 +  . . . . .  

(NL 5,. < NL 5,2 (NL)  ,3 (NL)  4 } 
(2.3) 
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If we now use the results that (v) 

<NL),. = 

<N~>, = 

<N~>,. = 
4 <NL> ,. = 

<NL> 

<N{> - < N L >  2 

3 _ 3 < N  2 2<Nc>3 <Nc) > < N L ) +  

<N4L)-4<N3 ) < N L ) -  3<N2 ) 2 

+ 12<N~)<NL>2--6<NL> 4 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

we obtain finally 

<Nc) <NL> 2 _ -- < N L ) - 3 < N 2 ) < N L )  +2<NL> 
<NL} 1+ <NL> 2 <NL> 3 

<N4>-4<N~)<NL)+6<N2)<NL>2-3<NL>4 } 
+ <NL> 4 + . . .  (2.5a) 

1 
= { 1 + # 2 + # 3 + / ~ 4 + . - - }  (2.5b) 

<Nc> 

According to Jensen's second inequality (see, e.g., ref. 8) 

1 t26) 
> <SL----- ~ 

the expansion in braces on the right-hand side of Eq. (2.5b) must be greater 
than unity. It is of interest to determine by how much it exceeds unity, 
because if the sum/~2 + P3 + ]-14 q- ' ' '  is small compared to unity, then it is 
a good approximation to replace <N~ 1 > by (NL)-~ .  This is also a useful 
approximation because, as we will see below, ( N L )  can be calculated 
analytically in many cases of interest. In addition, it is of interest to deter- 
mine how rapidly this expansion converges. 

The averages ( N ~ )  entering Eq. (2.5a) were calculated numerically. 
For this it was necessary first to compute the surface profile function r 
which is a Gaussianly distributed random variable possessing the proper- 
ties specified by Eq. (1.5). We did this by defining a set of points {xn} 
along the Xl axis by xn=nAx, with n = 0 ,  _+ 1, _+2 ..... where the length Ax 
will be defined precisely below. We then expressed the surface profile 
function ~(xl) at x 1 =x~ in the form 

r ~, WjXj+k (2.7) 
j -  - 3 0  
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where {Xn} for for n = 0 ,  + l ,  _+2 .... is a sequence of independent, 
Gaussian variables with zero mean and a standard deviation of unity. 

(X+) = 0 (2.8a) 

(XiXj) = F+/ (2.8b) 

while the { I4//} are a set of as yet undetermined weights. From the proper- 
ties (2.8) we find that 

(~(x~))  = 0 (2.9a) 

(~(Xk)~(Xk+,))=6 2 ~, WzWj + (2.9b) 
]-- oo 

From Eqs. (1.5b) and (1.8) we have 

(~(xk) ~(x~ +,) > = 6 ~ W(Ix,I) 

dQ 
= 6 2 f ~ e~QX~g(IQ] ) (2.10) 

from which it follows that 

~e+~ ) (2.11) 
j oo 

If we now introduce the representation 

W/= f dQ -~ Is ) e'QxJ (2.12) 

and use the result that 

j ~  -o(3 

in the limit as Ax ~ 0, we obtain 

1 dQ dQ f ~ W(Q) W(-Q) eiQx`= f ~ g ( I Q I ) c i Q X l  (2.14) 
A~ 

With the assumption, justified by the results, that W(Q) is real, we find 
that 

17/(Q) = ( A x )  W2 gl/2(IQI ) (2.15) 
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It follows finally that 

Wj=(Ax) '/2 f ~gl/2(IOl)e'~ (2.16) 

Although ff(xk) could be calculated by the use of Eqs. (2.7) and (2.16), 
it proved advantageous to use a modification of these results that exploits 
the speed of the fast Fourier transform. This modification consists in 
assuming that ~(xk) is a periodic function of k with period 2M, ~'(x~ + 2M) = 
~(xk), where 2M is a large integer. We can obtain a representation of ~(xk) 
with this property by requiring that Wj and X; also possess this periodicity, 
and writing 

1 M - - I  
l~/e il2~0/2M~ (2.17a) 

Wj = (2M)1/2 i= -M 

1 M - - I  

Xj-(2M)I/2 ~ J~e ~(2~j/zM) (2.17b) 
[ = - - M  

It then follows that if we write 

we obtain the result that 

M - - 1  

WjX~+k (2.18) 
j = - - M  

M - - 1  

~(X,) = 6 ~ IX 12lei(2~lk/2Ml=~(Xk+2M) 

From the inverse to Eq. (2.17a) 

1 M - I  

if/, - (2M)1/2 
j =  M 

we obtain the approximation 

f" 1 dx W(x)  e 
g/ ,=  (2M)L/2 Ax _~  

(2.19) 

Wje i{2~0/2M~ (2.20) 

�9 - I ( 2 ~ l x / ' S )  

in the limit as M ~  o% Ax~O, while 2'=2MAx. 
Eq. (2.16), this becomes 

1 
17~t= ( 2mdx)l/2 g~/Z(Iqtl ) 

where qt =- 27rl/5r 

(2.21) 

With the use of 

(2.22) 
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We next use the inverse to Eq. (2.17b) to write 

1 
)(~ = - -  (M~ + iNt) 

where 

It follows that 3 

(2.23) 

c~ M 1 1 

r - (2M Jx )  '/2 ,=~-M - -~  (M, + iN,) g,/2(iq,i) eiqt~' (2.25) 

The representation for r given by Eq. (2.25) is convenient not only 
because it is in a form that can be readily evaluated by the fast Fourier 
transform, but also because from the definitions (2.24) and the properties 
(2.8) it follows that the {M,} and {X~} are themselves independent, 
Gaussian variables with zero mean and a standard deviation of unity. 
They can be generated by the Marsaglia and Bray modification of the 
Box-Muller transformation of a pair of uniform deviates between zero and 
one obtained from a linear congruential generator. !1~ 

The derivative of the surface profile function evaluated at xl =xk  is 
obtained by differentiation of the expression given by Eq. (2.25) with 
respect to xk: 

~'(Xk) (2M Ax) 1/2 ,= -M - -~  (Mr + iNt) iq,gl/Z(tqll) e 'q'xk (2.26) 

In practice ~(Xl) and ~'(Xx) were calculated from Eq. (2.26) at a set 
of N consecutive values of x~ defined by x l = x ~  with k = - N / 2 ,  
- N / 2 +  1,..., N / 2 - 1 ,  which define a segment of the X l axis of length 
L = N Ax. We chose for L the value L = �89 i.e., N = IM. For  each realiza- 
tion of ~'(Xl) the number of zeros N L it possessed in this interval was 
calculated from the number of sign changes in the sequence of values of 
~'(xk) as k was swept through the range ( - N / 2 ,  N / 2 -  1 ). In these calcula- 
tions N was taken to be 16,384. The calculation of N L was repeated for 
each of Np realizations of ~'(Xl), and the results were used in obtaining the 

3 A representation of ~(xk) of the form given by Eq. (2.25) in the particular case W(jx l [ )=  
exp(-x~/a 2) was used by Thorsos. I~/ 

1 M -  l 2~lj 
=~_ Xj cos ~ = m t (2.24a) Mt = x / - ~ j  M 

M--1 
1 =~ Xj sin 2~rlj N l (2.24b) 

Nt = x/--~j M 2M = -- 
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averages ( N ~ )  required for the evaluation of the right-hand side of 
Eq. (2.5). The angular brackets here denote an average over the Np realiza- 
tions of ((xl) [and of .U(xl)]. In practice, Np was taken to be 50,000. 

We note, parenthetically, that a somewhat similar numerical algorithm 
has been constructed recently to generate surface profile functions that are 
stationary, stochastic, but non-Gaussian processes/1~) It yields results 
whose accuracy is quite comparable to that of the results to be described 
in the next section. 

3. R E S U L T S  

We have calculated ( N [  ~ ) by the methods described in the preceding 
section for three forms for the correlation function W(fXll). These, together 
with the corresponding surface structure factors g(IQ[), are: 

(a) W([xll)=a2/(x~+a 2) (3.1a) 

g(IQJ)=~zae-r~la (b=rca/2) (3.1b) 

(b) W(Ixlp)=e -x~/~2 (3.2a) 

g(IQ[) = ~l/2ae-O2a2/4 (b = rd/2a/2) (3.2b) 

(c) W(Jxlp)=sin(Trxl/a)/(Tzxl/a) (3.3a) 

g(lQI) =a, IQI <rc/a 

= 0  IOl > Tz/a (b=a/2) (3.3b) 

The values of b defined by Eq. (1.9) are presented in parentheses for each 
of the forms of W(IXlJ ) used here. However, in what follows the transverse 
correlation length corresponding to each of these choices will be under- 
stood to be the length a that appears in Eqs. (3.1a), (3.2a), and (3.3a). 

For each of these forms of W(]Xl[ ) we calculated ~(Xl) and ff'(xl) by 
the method described in the preceding section. In these calculations Ax was 
chosen to be a/40. As a check on the algorithm used in these calculations, 
we calculated the correlation function (~(xk)~(x~+t))/62- W([xl[)s for 
each of these forms, and compared the results with the exact expressions 
for W([Xll ) [ -  W(Fx~t)t ] given by Eqs. (3.1)-(3.3). The differences between 
the computed values of these correlation functions and the exact expres- 
sions given by Eqs. (3.1)-(3.3) were very small. To show them clearly, in 
Fig. 1 we have plotted the ratio [W(IxTl),--W(lxlJ)t]/[W([xll)s+ 
W(lxi[),]. The agreement between the computed and exact results is seen 
to be excellent for O<xl/a<2.5 in each case. We conclude that our 
algorithm for computing _~(Xl) is sufficiently accurate for our purposes. 
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We present in Table I our computed values of ( n ~ )  for n = - 1 ,  
1,2, 3,4, where nc=(a/L)Nc. We note from Eq. (1.10) that ( d ) =  
(n[ l)a. We have also tabulated there the values of the quantities #2, /~3, 
#4, which enter Eq. (2.5b) for ( N L  1). From the results presented in this 
table we see immediately that the two methods for calculating ( N [  1) 
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Fig. 1. The ratio EW(Ixal)s-- W(Ix~l),]/EW(Ixll)s+ W(lxa[),3, where W(Ixal)s is the com- 
puted value of the surface height correlation function and W(Ix,I), is the exact expression for 
it, as a function ofxa/a. (a) W(Ixli)=a2/(x2+a2); (b) W(Ixal)=exp(-x2/a2); (c) W(Ix~l)= 
sin(Tzx t/a)/(Tzxa/a). 
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Table I. Computed Averages of Powers of n t---(a/L) Nt, Where N t is the 
Number  of Zeros of ~ ' (xl )  in a Segment of the xt Axis of Length L, and a is 

the transverse Correlation Length 

(a) (b) (c) 

( n [ ~ ) 0.907999 1.28374 1.288286 
(nL)  t.1024l 0.779728 0,77806 
( n ~ )  1.21650 0.608563 0.606670 
(n 3 ) 1.34372 0.475429 0.474129 
@4 ) 1.48569 0.371778 0.371372 

#2 9.83653 ( - 4 )  9.65070 (--4)  2.27225 ( - 3 )  
kt 3 8.09697 (--7)  6.34091 (--7)  6.78204 ( - 6 )  
,u 4 2.88534 (--6)  2.80194 ( - 6 )  1.54756 ( - 5 )  

(El L 1 ~ series 0.907999 1.28374 1.288286 
(n  L ) - l 0.907104 1.28250 1.285337 

(HL)exac t 121/2/rc= 1.102658 61/2/rc = 0.779697 (3/5)1/2=0.774597 

a (a) W(Ixll)=aZ/(x~+aZ); (b) W(Ix~])=exp(-x~/a2); (c) W([xlr)=sin(Tcxl/a)/(~xl/a ). 

described in the preceding section, viz. by means of the series (2.5), and by 
direct calculation of this average, yield results which agree to six significant 
figures. We see, moreover, that the expansion (2.5) appears to have an 
asymptotic nature, in that, for each form assumed for W(rXll), #3 <#z < 1, 
but/~4 > #3. Finally, we see that ( d )  is remarkably well approximated by 
a/(nL). The percentage differences between a(n[, l) and a/(nc)  are 
0.099 %, 0.097 %, and 0.229 % for the correlation functions (3.1), (3.2), 
and (3.3), respectively. We also note that (n2 -1) > (nL)  -1, in agreement 
with Eq. (2.6). 

The accuracy of these calculations can be checked, because (NL)  can 
be calculated exactly for each of the correlation functions (3.1)-(3.3). The 
number of zeros of ~'(Xl) in the interval 0 < x l  < L  is given by 

L 

NL= fo dx, [~'(Xl)[ 6(~'(Xl)) 

= dXl 2 
i 

= ~ [O(L - Xl (i)) - 0( -x~( i ) ) ]  (3.4) 
i 

where xl(i ) is the ith zero of ~"(Xl), and 0(Xl) is the Heaviside unit step 
function. Each zero in the interval (0, L) contributes unity to the sum. The 
average number of zeros in (0, L) is therefore 

L 

( N L )  = [ dx I ( l ~ " ( . X l ) l ~ ( ~ t ( X l ) ) l )  ( 3 , 5 )  
J0 
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We use the representations 

I x l  = - ~  ~ f(k) e 'kx 

where 

and 

to write 

2(~ 2 - k  2) 
f ( k ) =  lira k2)2 e ~ 0 +  ( 8 2 +  

Maradudin and Michel 

{3.6) 

(3.7) 

(q~"(x,)l a(r 

= f ~ n f ( k )  f s  dq (eikr162 (3.9) 

If we now introduce the Fourier integral representation of r given by 
Eq. (1.6), the average we must evaluate becomes 

m =- (eikU(xDe iq;'(xD) 

= f_ ( -  ikQ2 - qQ) ((Q) e'ex~ (3.10) 

We evaluate this average by cumulant methods, (7) and use the fact that the 
cumulant averages of higher than second order of a Gaussianly distributed 
random variable all vanish. 4 With the aid of Eq. (1.Tb) the result is 

1 2 

where we have introduced the definition 

f ~  dQ ~-= g([Q]) Qzp _ mzp (3.12) 
oo a 2p 

4 This result is straightforward to establish by the use of results presented in ref. 7. 

i ~o dk eikX (3.8) ~(x) = ~ 
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The approach to the determination of ( N L )  described here therefore 
requires that m2 and m 4 be finite. This places restrictions on g(tQI) and 
hence on W(Ixll). When Eq. (3.11) is substituted into Eq. (3.9) we find that 

(rr 6(C(x,)) ) 

f 
~ dk 

= - ~  ~ s  

( 2 ~ I / 2 a  

a \ m 2 /  7c 

co dq c_(m2~2/2a2)q2 
C -- (m462/2a4)k2 f Go G 

lira+ lfodU 1-u  2 

(3.13) 

The result that this average is independent of x 1 is due to the stationarity 
of ((xl). When we combine Eqs. (3.13) and (3.5) we obtain 

(3.14) 
)1/2 1 <NL> L m 4 

a \m2,/  7c 

We remark that the expression (3.14) for ( N L )  can be extracted from 
some of the results obtained in the review article by Rice. ~12~ We believe the 
derivation presented here is more direct and simpler. 

The values of rn2 and m 4 for each of the three expressions for g(IQI) 

(3.15) 

given by Eqs. (3.1)-(3.3) are 

(a) m2 = 2, rn 4 = 24 

(b) m 2 = 2, m 4 = 12 

1 1 
( C )  m 2  ~-  5, m 4 =  ~ 

The resulting exact values of ( N L )  are presented in Table I, together with 
the numerical values computed by the method described in the preceding 
section. It is seen that the agreement is excellent. The calculated value of 
( N o )  departs fromthe exact value by 0.23 %, -0.0040 %, and -0 .44 % 
for the height correlation functions given by Eqs. (3.1), (3.2), and (3.3), 
respectively. These results give us additional confidence in the accuracy of 
the numerical methods used in the computation of ( N ~  ~ ). 

We note that in both the calculation of (,~(xi) ~(x'1))/62 and of ( N o ) ,  
the poorest accuracy, for the same computational effort, is obtained for the 
surface height correlation function given by W(Jxll)=sinOzxl/a)/(rcxl/a). 
This is presumably due to the nonmonotic dependence of this function on 
X 1 �9 
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We remark that in principle averages of higher powers of NL could 
also be evaluated in the manner just described, but in practice the resulting 
calculations are very complicated. 

Although the emphasis in this paper is on the mean distance <d> 
between consecutive zeros of the derivative of the surface profile function 
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Fig. 2. The function P(xl), which is defined in such a way that if x I = 0  is a zero of ~'(xl), 
P(xl) dxl is the probabil i ty  that the nearest zero of  ~'(xl)  for positive x 1 lies between Xl and 
xl +dxl. (a) W(lxll)-a2/(x~ +a2); (b) W(lxtl)=exp(-x~/a2); (c) W(IXll)=sin(rcxl/a)/ 
(TrXl/a). 
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~"(xl), and its relation to the transverse correlation length a, we note that 
this distance is but the first moment of the probability distribution function 
P(xl), which is defined in such a way that if x~ = 0 is a zero of ~'(xl), then 
P ( X l )  dx  1 is the probability that the nearest zero of ~'(xl) for positive x~ 
lies between xl and x~ + dXl: 

;o (d )  = dXlxlP(X1) (3.16) 

The determination of P(x~) analytically is a very difficult problem, which 
apparently has not been solved yet. ~2) It can, however, be computed easily 
by the numerical methods used in this paper. 

To calculate P(x~), we first calculated Np = 50,000 relizations of ~'(x~) 
by the method described in the preceding section, at N values of x~ = k Ax 
obtained by sweeping k through the range ( - N / 2 ,  N/2 -1 ) .  In these 
calculations N was again chosen to be 16,384, while the period L~ of 
((xl),  given by ~ = 2 M A x ,  was defined by choosing M=2N.  For each 
realization of ~'(xl) the sequence ~'(Xk)~Z(Xk+l) was  formed for 
k-- -N/2,..., N / 2 - 1 ,  and the sign of each product recorded. A negative 
sign for ~'(xk)~'(xk+l) indicated that ~'(xl) had a zero between xk and 
x~+l,  i.e., between xk and x~+Ax. The distances between consecutive 
zeros were also recorded. Finally, a histogram was constructed from all the 
data collected that gave the number of times the distance between con- 
secutive zeros of ff'(xl) fell in the interval (x~, xk+ Ax) with k = 0, 1, 2,.... 
Normalized to unity, this histogram yielded P(x~). In these calculations Ax 
was again chosen to be a/40. 

The results of our determinations of P(xt) for each of the surface 
height correlation functions given by Eqs. (3.1)-(3.3) are presented in 
Fig. 2. As expected, this function has a pronounced peak in the vicinity of 
x~ = ( d ) ,  which decreases to zero rapidly as x 1 departs from this value. 
With P(x~) in hand, one can calculate higher moments of this distribution 
function than the first. One can extend such calculations to obtain the 
probability distribution function for the distance between consecutive 
maxima or consecutive minima on the randomly rough surface. We have 
not carried out such calculations here, and leave them to subsequent work. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

In this work we have described a numerical algorithm for generating 
a surface profile function ~(xl), and its derivative ~'(xl), that is a stationary 
stochastic, Gaussian process, characterized by a specified surface height 
correlation function. We have used it, together with analytic checks on its 
accuracy, to relate the average separation between consecutive peaks and 

822/58/3-4-7 
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valleys on the randomly rough surface ( d )  to the transverse correlation 
length a, which characterizes the spatial decay of the surface height correla- 
tion function. We have also used this algorithm in a calculation of the 
probability distribution function of the separation between consecutive 
peaks and valleys on the surfaces. 

From the results presented in Table I we see that (d)--_ a, as stated 
in the Introduction. Indeed, when the surface height correlation function 
is given by W(Ixll)--=a2/(x2+a2), we have that (d)=0.9080a; when 
W ( I x l l  ) = exp(-x~/a2), ( d )  = 1.2837a; and when W(Ixll) = sin(rcxl/a)/ 
(rcx1/a), ( d )  = 1.2883a. We do not pretend that results obtained for three 
different forms for the correlation function W(Ixal), albeit of widely 
differing analytic forms, constitute a proof of this relation for an arbitrary 
form for W(IXll). In the absence of a generally accepted definition of the 
transverse correlation length, such a proof is not possible. Nevertheless, 
these results indicate that the transverse correlation length is indeed a good 
measure of the average distance between consecutive peaks and valleys on 
the randomly rough surface. They also suggest that (d )  is larger the faster 
the surface structure factor g(lQI) decays to zero with increasing I QI. This 
is consistent with the increase in (NL) as g(IQI) decays more slowly with 
increasing bQI, and the near equality of <NLI> with <NL>-t 

It is, perhaps, not surprising that the transverse correlation length a 
should be comparable with the mean distance between consecutive zeros of 
~'(xl), <d), i.e., the distance between consecutive maxima and minima of 
the surface profile function r On one hand, a is the only length charac- 
terizing the surface roughness along the surface, i.e., along the xl axis. On 
the other hand, a is, crudely, the distance beyond which the heights of the 
surface become statistically uncorrelated, while (d> is on average the 
maximum distance over which the surface profile function decreases from 
a maximum before it starts to increase toward the next maximum. It would 
be surprising if the latter distance were significantly different from the 
former. 

It is hoped that the results presented here may be helpful to 
experimentalists engaged in measuring the statistical properties of ran- 
domly rough surfaces in refining their estimates of the transverse correla- 
tion length a by relating it to a simple geometrical property of a random 
surface. We also hope that the discussion presented here will stimulate 
efforts to define the transverse correlation function more precisely. Finally, 
we would be very pleased if mathematicians were stimulated by these 
results to attack again the problem of determining the probability distribu- 
tion function P(xl) by more analytic methods than were employed here. 
Theoretical and experimental studies of properties of randomly rough 
surfaces would be aided by these developments. 
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